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Abstract
For a system of multiphoton Jaynes–Cummings model, which represents the
interaction of a two-level atom with the radiation field, we study the connection
between the atomic inversion, in particular the occurrence of revival–collapse
phenomenon (RCP), and the higher-order fluctuation factors. We assume that
the atom and the field are initially prepared in the excited and the k-photon
coherent states, respectively. We show that there is a class of states for which
the higher-order fluctuation factor can provide RCP similar to that involved in
the corresponding atomic inversion. Moreover, for initial coherent light we
prove that the higher-order fluctuation factor of the three-photon transition can
provide RCP similar to that occurring in the atomic inversion of the one-photon
transition. As an example we discuss the fourth-order fluctuation in detail.

PACS numbers: 42.50.Dv, 42.60.Gd

In the previous paper [1] for the Jaynes–Cummings model (JCM) we have discussed the
possible occurrence of the revival–collapse phenomenon (RCP) of the atomic inversion 〈σ̂z(T )〉
in the evolution of the quadrature fluctuation (i.e. squeezing), particularly for the normal and
the amplitude-squared fluctuations. We have shown that there are two approaches, namely,
the natural-phenomenon and numerical-simulation approaches. In the natural-phenomenon
approach the fluctuation factors naturally include information on the corresponding atomic
inversion. Nevertheless, for the numerical-simulation approach we have deduced the rescaled
fluctuation factor for the three-photon JCM, which can exhibit the RCP similar to that involved
in the evolution of the atomic inversion of the standard JCM (i.e., single-photon JCM with
initial coherent light). We should stress that the term ‘natural-phenomenon approach’ is given
to show that the fluctuation factors of the system provide information on the atomic inversion
of the same system; however, the term ‘numerical-simulation approach’ demonstrates that
the fluctuation factors of another system, i.e. three-photon JCM, give information on the
atomic inversion of the standard JCM. Additionally, the rescaled fluctuation factor of the
latter approach is obtained through very complicated numerical procedures. In this report
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we complete the results given in [1] by discussing such phenomenon for the higher-order
fluctuation and investigating in detail the occurrence of the RCP in the evolution of the fourth-
order fluctuation as an example. Like one that exhibits normal squeezing, a field that is
squeezed to a higher order is a pure quantum mechanical light and has no classical description.
Moreover, the higher-order squeezing for the JCM has been investigated, e.g. in [2, 3]. The
results given in [1] and in the present paper draw the attention for the first time to an important
fact: the evolution of the 〈σ̂z(T )〉 can be measured by a homodyne detector [4], in which
the signal coming from the microwave cavity is optically mixed with a strong coherent local
oscillator via a 50:50 beam splitter and the emerging fields are detected by photodetector [5].
Moreover, the progress in both trapped ions [6] and micromaser [7] is promising to produce
such a type of phenomena. Additionally, the higher-order fluctuation is motivated by the
development in the higher-order correlation measurement techniques, which can efficiently
extract information from a quantum system [8]. Also the motivation is a direct consequence
of the interest which has been given to the higher-order fluctuation in the literature, e.g. [9].

The Hamiltonian of the multiphoton JCM in the rotating wave approximation [1, 10, 11]
is

Ĥ

h̄
= ω0â

†â + ωaσ̂z + λ(âmσ̂+ + â†mσ̂−), (1)

where σ̂± and σ̂z are the Pauli spin operators; ω0 and ωa are the frequencies of the cavity
mode and the atomic transition, respectively; λ is the atom–field coupling constant; m is the
transition parameter and h̄ is the Dirac constant. According to the lines given in [12], the
use of the Hamiltonian (1) is called an effective Hamiltonian approach. In this approach
the probability amplitudes of the dynamical wavefunction of the system include trivial (or
intensity independent) overall phase, which has no effect on the evolution of the fluctuation
factors. In contrast the modified effective Hamiltonian approach, for the phenomena under
consideration, provides similar results to those in [1], i.e. for natural phenomenon the
fluctuation factors give typical information on the atomic inversion, while for the numerical-
simulation approach they fail. Also as in [1] the values of atomic-relative phases act only
in the natural approach. Thus in this report we use the effective Hamiltonian approach and
neglect the role of the atomic-relative phases. We assume that the atom is initially prepared in
the excited states |+〉 and the field is in the k-photon coherent states [13, 14] having the form

|ψ(0)〉 =
∞∑

n=0

Cn|kn〉, Cn = αn

√
n!

exp

(
−1

2
α2

)
, (2)

where k is a parameter whose value will be specified in the text. For these initial conditions
the interaction dynamical wavefunction can be evaluated [1, 15] as

|�(T )〉 =
∞∑

n=0

Cn

[
cos

(
T

√
(kn + m)!

(kn)!

)
|+, kn〉 − i sin

(
T

√
(kn + m)!

(kn)!

)
|−, kn + m〉

]
,

(3)

where T = λt and |−〉 denotes the atomic ground state. In (3) we have considered the
resonance case mω0 = ωa and α to be real.

The atomic inversion associated with (3) is

〈σ̂z(T )〉 =
∞∑
n

P (n) cos

(
2T

√
(kn + m)!

(kn)!

)
, (4)

where P(n) = C2
n . Additionally, we deduce the asymptotic form for (4) when m = 1 in the

framework of strong-intensity regime (SR), i.e. α2 � 1. It should be borne in mind that P(n)
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(a) (b)

Figure 1. The atomic inversion 〈σ̂z(T )〉 for the exact (a) and the asymptotic (b) forms for m = 1
against the scaled time T when the optical cavity mode and atom are initially prepared in the
three-photon coherent (with |α| = 7) and excited states, respectively.

has a Poissonian distribution and consequently in the SR the terms contributing effectively in
the summation (4) are those for which n � α2 = n̄, i.e. the harmonic approximation [16]. The
argument of the cosine in (4) can be asymptotically expressed as

√
kn + ε1 =

√
kn̄

[
1 +

n + (ε1/k) − n̄

n̄

] 1
2

� 1

2
(η1 + η2n), (5)

where

η1 =
√

kn̄ +
ε1√
kn̄

, η2 =
√

k

n̄
(6)

and ε1 is a finite c-number, for the present case ε1 = 1. On substituting (5) into (4) and after
some minor algebra we obtain the asymptotic form as

〈σ̂z(T )〉 � exp

[
−2α2 sin2

(
η2T

2

)]
cos[T η1 + α2 sin(T η2)]. (7)

It is evident that the exponential part in (7), which is responsible for the occurrence of the
revival patterns, is dependent on the parameter k. More illustratively, the revivals occur
around η2T = 2m′π , i.e. T = 2πm′√n̄√

k
where m′ is a positive integer. This indicates that

when k increases the series of the revival patterns increases, too. This is in a good agreement
with that occurring for the superposition states. In figures 1(a) and (b) we have plotted the
atomic inversion for the exact (4) and asymptotic (7) forms, respectively, for given values of
the interaction parameters. A comparison between these figures shows that there is agreement
and disagreement in their behaviour. Qualitatively, they are approximately in agreement
in the locations of the revival–collapse patterns in the interaction-time ‘domain‘, but the
corresponding revivals cannot provide typical amplitude and shape, i.e. for the exact form
the revivals are broader than those for the asymptotic one. This problem can be solved by
including higher-order approximation in (6), however, the price that should be paid, we cannot
obtain a simple closed form for 〈σ̂z(T )〉. For convenience we compare figure 1 with those
given in the literature for initial coherent light, e.g. [17–19]. Generally, for the exact form
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one can see that the two types of behaviour (i.e. in the literatures and here) are similar, i.e.
an initial collapse of these oscillations is followed by regular revivals that slowly become
broader and eventually overlap. The basic difference between figure 1(a) and those given
for initial coherent light [17–19] is that the revival patterns occur for interaction time much

shorter than that of coherent light. Actually, we have found that T (k)
r = T

(c)
r√
k

, where T (k)
r and

T (c)
r denote the revival times associated with the initial k-photon coherent state and coherent

state, respectively.
Now we draw attention to the higher-order fluctuation using the definition given in [20],

which is based on the two quadratures X̂N and ŶN having the forms

X̂N = 1

2
(âN + â†N), ŶN = 1

2i
(âN − â†N), (8)

where N is a positive integer. The fluctuation factors associated with (8) can be expressed as
[20]

FN(T ) = 〈â†N(T )âN(T )〉 + Re〈â2N(T )〉 − 2(Re〈âN (T )〉)2,
(9)

SN(T ) = 〈â†N(T )âN(T )〉 − Re〈â2N(T )〉 − 2(Im〈âN (T )〉)2.

As we mentioned above the attention in this report is focused on the occurrence of the
RCP in the evolution of FN(T ) and SN(T ). This will be investigated in the following two
parts for natural phenomenon and numerical-simulation approaches.

(i) Natural phenomenon. This approach is based on the fact that ω0â
†â + ωaσ̂z is a constant

of motion and consequently 〈â†(T )â(T )〉 and 〈σ̂z(T )〉 provide information on each other.
Nevertheless, for the higher-order moments, i.e. N > 1, the operator â†N âN + σ̂z is not a
constant of motion even though, in the SR, 〈â†N(T )âN(T )〉 can provide information on the
corresponding 〈σ̂z(T )〉. We show this as follows. From (9), FN(T ) and SN(T ) provide RCP
when there are initial field states for which 〈âs ′

(T )〉 = 0 for all values of s ′. For instance,
state (2) can achieve this when 2N/k = l and N/k = l′ where l and l′ are fractions. More
illustratively, for the cubic- (N = 3) and fourth-order (N = 4) fluctuations this occurs
when the parameter k = 4 (four-photon coherent state) and 3 (three-photon coherent state),
respectively. Actually, three-photon and four-photon coherent states can be generated by the
conditional measurement [21] and dispersive cavity QED [22]. We deduce the general form
which connects 〈â†N(T )âN(T )〉 with the corresponding 〈σ̂z(T )〉 for the state (3) when m = 1.
From the above discussion, expressions (9) reduce to

FN(T ) = SN(T ) = 〈â†N(T )âN(T )〉

=
∞∑

n=0

C2
n

[
(kn)!

(kn − N)!
cos2(T

√
kn + 1) +

(kn + 1)!

(kn − N + 1)!
sin2(T

√
kn + 1)

]

= 〈â†N(0)âN (0)〉 +
N

2
〈â†N−1(0)âN−1(0)〉

− N

2

∞∑
n=0

C2
n

(kn)!

(kn − N + 1)!
cos(2T

√
kn + 1). (10)

In the SR and finite N the argument
√

kn + ε2, where ε2 is a finite and arbitrary c-number, can
be replaced by

√
kn + 1 and the summation in the third line of (10) can be evaluated in terms

of 〈σ̂z(T )〉, and we obtain

〈σ̂z(T )〉 = 〈â†N(0)âN (0)〉 + N
2 〈â†N−1(0)âN−1(0)〉 − SN(T )

N
2 〈â†N−1(0)âN−1(0)〉 . (11)
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Formula (11) can be deduced by induction. As an example we evaluate the fourth-order
fluctuation when the field is initially in the three-photon coherent state for m = 1. The fourth-
order squeezing is already studied for the multiphoton JCM in [2]. For k = 3,m = 1, N = 4,
(3) and (9) give

F4(T ) = S4(T ) = 〈â†4(T )â4(T )〉

= 〈â†4(0)â4(0)〉 + 2〈â†3(0)â3(0)〉 − 6α2
∞∑

n=0

P(n)[9α4 cos(2T
√

3n + 10)

+ 18α2 cos(2T
√

3n + 7) + 2 cos(2T
√

3n + 4)]. (12)

Using the discussion given below (10) expression (12) can be expressed as

F4(T ) = S4(T ) = 〈â†4(0)â4(0)〉 + 2〈â†3(0)â3(0)〉 − 2〈â†3(0)â3(0)〉〈σ̂z(T )〉. (13)

Also we have numerically checked (11) for the case expressed by (13) using as values of
the interaction parameters those given for figure 1(a). We obtained a typical shape as in
figure 1(a) and this verifies the above discussion. We conclude this part by referring to a
misprint in (38) in [1] where the term 3〈n̂(0)〉 should be added to the numerator.

(ii) Numerical simulation. In this part we prove that the RCP of the atomic inversion of the
standard JCM can be observed in the evolution of the higher-order (i.e. Nth-power) fluctuation
of the multiphoton JCM. From (3) one can easily find that Re〈âN (T )〉 �= 0 and Im〈âN (T )〉 = 0,
where α is real. Therefore, FN(T ) (cf (9)) cannot provide RCP where it includes a squared
quantity, which destroys the RCP. This means that RCP almost occurs in the evolution of the
SN(T ). Additionally, when m > 2 the evolution of 〈â†N(T )âN(T )〉 is chaotic and in the SR
one can asymptotically prove that 〈â†N(T )âN(T )〉 � n̄N (see the argument below (14)). Thus
if SN(T ) exhibits RCP this would be connected to the evolution of Re〈â2N(T )〉, which for
k = 1 takes the form

〈â2N(T )〉 = n̄N

∞∑
n=0

P(n)


cos

(
T

√
(n + m + 2N)!

(n + 2N)!

)
cos

(
T

√
(n + m)!

n!

)

+

√√√√ 2N∏
j=1

(
1 + m+j

n

)
(
1 + j

n

) sin

(
T

√
(n + m + 2N)!

(n + 2N)!

)
sin

(
T

√
(n + m)!

n!

)
 . (14)

In the framework of both the SR and harmonic approximation the quantity under the square
root in the second line of (14) reduces to unity and we obtain

〈â2N(T )〉 � n̄N

∞∑
n=0

P(n) cos

[
T

(√
(n + m + 2N)!

(n + 2N)!
−

√
(n + m)!

n!

)]
. (15)

Regardless of the constant prefactor n̄N , the comparison between expression (4) when
(k,m) = (1, 1) and (15) leads to the following fact: the fluctuation factor SN(T ) can provide
information on 〈σ̂z(T )〉 of the standard JCM provided that the arguments of the cosines in
the two expressions are comparable. Thus the object is to find the proportionality factor µN ,
say, and consequently the value of m, which can achieve this goal. This can be realized by
evaluating the asymptotic form for the following quantity:

µN =
√

(n+m+2N)!
(n+2N)! −

√
(n+m)!

n!

2
√

n + 1
. (16)
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(c)

(b)(a)

Figure 2. The atomic inversion 〈σ̂z(T )〉 (a), the fluctuation factor S4(T ) (b) and the rescaled
fluctuation factor Q4(T ) (c) plotted against the scaled time T when the optical cavity mode
and the atom are initially prepared in the coherent and excited atomic states, respectively, with
(m, |α|) = (3, 9).

Expression (16) can be re-expressed as

µN = 1

2
√

(n + 1)
∏2N

j=1(n + m + j)

√
(n + m)!

n!


 ∏2N

j=1(n + m + j) − ∏2N
j=1(n + j)√∏2N

j=1(n + m + j) +
√∏2N

j=1(n + j)




= 1

2
√

(n + 1)
∏2N

j=1(n + m + j)

√
(n + m)!

n!

×

2Nmn2N−1 + n2N−2(· · ·) + n2N−3(· · ·) + · · · + n0(· · ·)√∏2N

j=1(n + m + j) +
√∏2N

j=1(n + j)


 . (17)
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It is worth recalling that we are working in the SR. Therefore, for finite values of N we
can use (n + ε) → n = n̄, where ε is a finite c-number. In this case (17) can be modified to

µN � n̄m

4n̄2N+1

√√√√ m∏
j=0

(
1 +

m − j

n̄

)
[2Nmn̄2N−1 + n̄2N−2(· · ·) + n̄2N−3(· · ·) + · · · + n̄0(· · ·)]

� 1

4

[
2Nmn̄

m−3
2 + n̄

m−5
2 (· · ·) + n̄

m−7
2 (· · ·) + · · · + n̄

m−4N−2
2 (· · ·)

]
. (18)

In the SR only the first term in (18) can survive provided that m = 3, i.e. three-photon JCM.
In this case the proportionality factor µN reduces to

µN = 3N

2
. (19)

From the above discussion and (19) we can write the general form for the rescaled higher-order
fluctuation factor, which can give information on 〈σ̂z(T )〉 of the standard JCM, as

QN(T ) = SN

(
2T
3N

) − 〈n̂(0)〉N
〈n̂(0)〉N . (20)

One can easily check that the rescaled factors for the normal and amplitude-squared fluctuation
in [1] are particular cases of (20). Finally, in figures 2(a)–(c) we have plotted 〈σ̂z(T )〉
of the standard JCM, and S4(T ) and Q4(T ) of the three-photon JCM, respectively, for
given values of the interaction parameters. Figure 2(b) shows that S4(T ) exhibits a series
of revival patterns, which are much greater than those for 〈σ̂z(T )〉 of the standard JCM
(see figure 2(a)). Nevertheless, a comparison between figures 2(a) and (c) leads to that
Q4(T ) provides RCP quite similar to that of 〈σ̂z(T )〉. This concludes our demonstration, i.e.
QN(T )|m=3 ≡ 〈σ̂z(T )〉m=1 for the same initial conditions. We should stress that when the
squeezing-order N increases the initial mean-photon number has to be increased to obtain
better information from (20) on 〈σ̂z(T )〉m=1. Details about this issue will be published
elsewhere. The comparison between figures 2(a) and (c) with those given in the literature to
the atomic inversion of the standard JCM with initial coherence, e.g. [17–19], shows that they
are quite similar. Moreover, in [18] for the JCM it has been shown that the evolution of both
the phase variance and the phase distribution can carry certain information on the RCP of the
corresponding atomic inversion. These facts and the results given here and in [1] indicate that
the evolution of the fluctuation factors for the natural and numerical approaches can partially
give information on the phase distribution of the system, and vice versa.

In conclusion we have deduced the general forms of the rescaled fluctuation factors for
both natural phenomenon and numerical-simulation approaches. These results with those
given in [1] complete the information about the occurrence of the RCP in evolution of the
fluctuation factors.
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